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Figure 1. AlignHOI reconstructs accurate and coherent hand–object interactions from monocular video via alignment and refinement. This
unified strategy enables high-fidelity object reconstruction and stable, realistic 3D interactions across diverse manipulation sequences.

Abstract

Reconstructing Hand–Object Interactions (HOI) is essen-
tial for understanding human manipulation and enabling
downstream applications such as AR/VR and robotics.
However, accurate HOI reconstruction from videos remains
challenging: in-hand object pose estimation is ill-posed due
to unknown object shape and severe occlusions, while the
reconstruction of hand–object interaction from disparate
coordinate systems suffers from scale and depth ambigui-
ties that hinder accurate interaction modeling. We observe
that these challenges share a common root: the underly-
ing solutions remain fundamentally ambiguous when in-
ferred from ill-posed monocular observations. Motivated
by this insight, we introduce AlignHOI, a unified align-
ment–refinement framework that converts these ambigu-
ous subproblems into well-constrained optimization tasks.
Within AlignHOI, both object pose estimation and hand re-

construction follow the same principle: coarse alignment
first restricts the solution space, and the remaining discrep-
ancies are then resolved through refinement. Specifically,
for object pose estimation, we cast the problem as finite tem-
plate matching by enumerating rendered 3D pose templates
derived from a generated prior and retrieving the plausible
candidate, thereby converting continuous estimation into a
tractable matching problem. The retrieved pose is then fur-
ther refined to bridge the gap between the discrete template
space and the continuous pose domain. For hand–object
interaction, we align the hand to the object using their 3D
relative position to address scale and depth ambiguities, fol-
lowed by refinement to enforce physically plausible inter-
action. Experiments demonstrate that AlignHOI achieves
state-of-the-art accuracy and reconstruction quality while
running significantly faster than existing methods.
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1. Introduction
Reconstructing hand–object interactions involves recover-
ing the 3D geometry and pose of both hands and objects
from visual observations such as videos or images. This
task is crucial for understanding how humans manipulate
objects and interact with the physical world, and it fur-
ther supports a range of popular applications such as in-
hand object scanning [17], robotic manipulation [33], and
AR/VR [1].

A key challenge in hand–object reconstruction is how to
obtain accurate object poses for previously unseen objects.
This problem is particularly significant and difficult to ad-
dress due to two main reasons: (1) Lack of a universal
prior. Unlike hands, where strong statistical models pro-
vide useful priors, objects are highly diverse and category-
agnostic, making it difficult to define a unified representa-
tion for pose estimation. (2) Frequent occlusions during
interactions. When a hand grasps or manipulates an object,
the object is often partially covered by the hand, making
it challenging to acquire sufficient visual evidence for reli-
able pose estimation. In particular, such occlusions lead to
too few reliable feature correspondences, which is a com-
mon failure case for reconstruction methods that rely on
structure-from-motion (SfM) initialization.

Several representative works reflect the challenge dis-
cussed above. Huang et al. [16] leverages hand priors [29]
to obtain accurate hand poses and directly uses them as ob-
ject poses. However, the method assumes no relative shift
between the hand and the object. This strong assumption
prohibits dynamic hand–object interactions, as it requires
the hand to grasp the object at the same location throughout
the entire sequence. HOLD [10] and MagicHOI [40] rely on
SfM for initialization. Since SfM struggles under occlusion
and with textureless objects, these methods usually incorpo-
rate additional strategies to mitigate the effect of inaccurate
poses. However, such strategies only partially alleviate the
problem and do not fundamentally resolve the issue of un-
reliable pose estimation in hand-object reconstruction.

In this paper, we propose AlignHOI, a novel framework
for reconstructing hand–object interactions using an align-
ment–refinement strategy. AlignHOI achieves both accu-
rate object pose estimation and high-quality mesh recovery
under severe occlusions and dynamic interactive motion.
We reformulate object pose estimation as a finite template-
matching problem, where rendered pose templates are first
retrieved to coarsely align the object pose and then refined
via optimization, enabling stable and efficient estimation
even under partial occlusions. Once the pose is estimated,
we perform implicit surface reconstruction to obtain fast
and high-fidelity object geometry and appearance.

Even with accurate object shape and pose, hand–object
misalignment commonly occurs due to inherent scale and
depth ambiguities. To address this, we first align the hand to

the object by predicting their 3D relative position, and then
refine the hand reconstruction to ensure physically plausi-
ble interaction. Together, these components enable robust
hand–object reconstruction with state-of-the-art efficiency
and accuracy.

Our key insight is to use geometric priors for coarse pose
alignment followed by optimization-based refinement. For
object pose estimation, we cast the open-ended 3D predic-
tion problem as finite template matching, enabling stable
and efficient estimation under occlusions. For hand–object
interaction, we align the hand to the object via their 3D rel-
ative position to resolve scale and depth ambiguities, and
refine the result using physical and geometric constraints
for realistic interaction.

In summary, our contributions are:
• We propose a stable and effective formulation for

category-agnostic object pose estimation under severe in-
hand occlusions. By converting the ill-posed continu-
ous pose regression problem into a tractable template-
matching problem, our method enables reliable pose re-
covery in challenging hand–object interaction scenarios.

• We develop a highly efficient hand–object reconstruc-
tion pipeline that delivers fast and high-quality 3D recon-
struction across long interaction sequences. Specifically,
we extend an efficient neural representation framework
to support dynamic HOI reconstruction, enabling signifi-
cantly faster processing compared to existing methods.

• We introduce a HOI optimization strategy that is both
spatially consistent and physically plausible, effectively
resolving cross-coordinate inconsistencies between the
hand and the object. Extensive experiments demonstrate
that our method achieves stable and coherent 3D align-
ment across diverse interaction scenarios.

2. Related Works
Object reconstruction: Recent advances in 3D recon-
struction from 2D images have made remarkable progress.
Classical methods rely on multi-view stereo [11, 19], while
recent works employ neural representations [37] for more
accurate reconstructions. However, most still depend on
SfM [4], which are not accurate under dynamic, low-
textured scenes [16]. To address this, data-driven ap-
proaches leverage large-scale datasets [9] and train feed-
forward networks [26, 35] to infer 3D directly from images.
Our approach leverages advantages from both neural rep-
resentations [41] and feed-forward models [43] to tackle a
much more challenging task of reconstructing not only ob-
jects but also hands from monocular videos.

Hand-held object reconstruction: Reconstructing hand-
held objects has gained increasing attention in recent years,
yet remains highly challenging due to frequent hand oc-
clusions and the wide variety of unseen object categories.
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Figure 2. Pipeline overview. We first estimate in-hand object poses via template matching, followed by geometric-consistency verification
and continuous refinement. Using these poses, we reconstruct the object with an implicit SDF representation parameterized by fθ and
gϕ. Finally, we align the reconstructed object and the hand within a unified coordinate system using HORT, and refine the result through
spatially and physically consistent hand–object optimization. This enforces accurate alignment and realistic interaction, enabling robust
reconstruction under occlusions, low-texture objects, and dynamic hand–object motion.

Many approaches assume that the object shape is known
and focus on estimating its pose [4, 44]. While effective,
ground-truth object templates are typically unavailable in
real-world settings. Learning-based methods [15, 18] at-
tempt to predict both object shape and poses directly, but
they generalize poorly to unseen object shapes. Conse-
quently, recent works explore neural representations [37]
to improve object shape generalization. Huang et al. [16]
leverage the MANO hand prior [29] to approximate ob-
ject poses in static settings. BundleSDF [42] and Ham-
pali et al. [14] extend reconstruction to dynamic interac-
tions by jointly optimizing the object mesh and its pose tra-
jectory. HOLD [10] and MagicHOI [40] further improve
dynamic reconstruction quality, but rely on SfM initializa-
tion, which is unstable under severe occlusions. Chen et
al. [5] track an implicit object shape by aligning per-frame
point clouds to its SDF surface, but require access to the ob-
ject point cloud at every frame. Most related to our work,
Jiang et al. [17] leverage a text-to-3D generative model to
synthesize a pseudo object template, reducing the difficulty
of reconstructing unknown objects. However, optimizing
the pseudo-template pose in continuous 6-DoF space is in-
herently unstable and often results in degraded reconstruc-
tions. We instead formulate this step as a discrete template-
matching problem, followed by a refinement stage for accu-
rate pose estimation in continuous space.

Hand-object interaction reconstruction: Beyond accu-
rate object shapes and poses, hand-object interaction re-
construction additionally aims to capture the geometric
relationship between object and hands in the 3D space
[4, 6, 8, 36, 44, 46]. While prior works suffer from incon-
sistent initialization of hand and object coordinate systems,
methods such as HOLD [10] and EasyHOI [21] tackle this
issue using 2D mask supervision for global alignment fol-
lowed by refinement. However, mask-based alignment en-
forces only silhouette overlap, often producing hand–object
pairs that appear aligned in the 2D camera view but re-
main misaligned in 3D space. We observe that the rela-
tive hand–object relationship remains invariant across coor-
dinate systems and can therefore serve as a geometric prior.
We leverage a feed-forward method [7] to estimate this re-
lationship, aligning the hand parameters within the object
coordinate frame for consistent interaction reconstruction.

3. Method

Given a monocular input video, our objective is to accu-
rately reconstruct both the shape and the pose of an in-
teracting hand and object. Our method consists of three
stages. (1) Object pose estimation (§ 3.2), where a fi-
nite template-matching formulation enumerates pose hy-
potheses through rendered templates. Combining feature-
based retrieval, geometric-consistency selection, and con-
tinuous pose refinement, this stage remains stable and ac-
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curate even for thin objects, textureless surfaces, and severe
hand–object occlusions (see Fig. 4). (2) Fast object re-
construction (§ 3.3), where we efficiently recover object
mesh using the estimated poses. (3) Hand–object interac-
tion optimization (§ 3.4), where we refine hand pose and
hand–object alignment to obtain accurate interactions.

3.1. Preparation
Coarse Object Prior for Template Matching: We use
Amodal3R [43] to generate an initial object mesh M̂o for
rendering template views in § 3.2. Note that we only use
this mesh as a geometric prior in the object pose matching
stage, where it provides 3D-consistent renderings for tem-
plate retrieval. Because our in-hand object pose estimation
strategy is robust to geometric variations and texture differ-
ences, this generated prior is fully sufficient for reliable ini-
tialization and ensures that subsequent optimization starts
from a geometry-faithful and occlusion-robust pose.

Hand initialization: For each frame, we use an off-the-
shelf hand model [27] to estimate MANO parameters [29],
including hand pose θ ∈ R45, hand shape β ∈ R10, global
rotation Rh ∈ SO(3), and translation th ∈ R3.

3.2. Object Pose Estimation
Given M̂o, we render it from m different predefined object
poses P = {ptemp

i }mi=1 to build a template set of images
T = {Ti}mi=1. For each video frame I , we identify the most
similar template image Twin and use its associated canoni-
cal pose ptemp

win as a coarse initialization of the object pose.
We then refine this initialization in continuous pose space to
close the quantization gap introduced by the discrete tem-
plate poses. By constraining the search to a discrete set of
poses, we convert an unbounded prediction problem into a
finite, well-behaved search space, enabling stable and effi-
cient object pose estimation.

Object Pose Matching: Our goal is to retrieve the object
template whose predefined pose best matches the observed
video frame. We begin by extracting patch-level features
from each template Ti ∈ T using DINOv2. Following [25],
all template features are clustered via k-means, and each
template is encoded as a k-dimensional cluster-based vector
representation.

For each video frame I , we compute the cosine similarity
between its feature embedding and each template descrip-
tor,

s(I, Ti) =
⟨f(I), f(Ti)⟩
∥f(I)∥ ∥f(Ti)∥

, (1)

where f(·) denotes the feature embedding. Since cosine
similarity normalizes vectors and emphasizes their direc-
tions rather than magnitudes, the matching becomes insen-
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Figure 3. Object Pose Estimation. Given a query image, we
1) Retrieve top-n candidate templates that have predefined poses,
and then 2) Select the winner template using geometric consis-
tency. Using the winner template pose as an 3) Initialization, we
4) Optimize the pose to obtain final pose estimation.

sitive to the number of visible features and thus remains
robust even under partial occlusion.

While this coarse matching is efficient, we observe that
the top-ranked template does not always provide the most
accurate geometric alignment, as feature similarity alone
may overlook fine-grained geometric cues. To mitigate this,
we first retain the top-n templates with the highest similarity
scores:

Tcand(I) = Top -n
(
{ s(I, Ti) }mi=1

)
, (2)

where Top -n(·) returns the n templates with the highest
similarity scores. We then assess geometric consistency
within this candidate set by estimating a pose for each tem-
plate via RANSAC-PnP and selecting the template whose
estimated pose yields the largest inlier count. This inlier-
based selection complements the feature-based retrieval,
leading to accurate and stable template matching even under
heavy occlusions and complex hand–object interactions.

Object Pose Refinement: The retrieved template pose
ptemp

win , which is selected from a discrete pose set P , pro-
vides only a coarse approximation of the true object pose.
To obtain a continuous and accurate estimate, we match DI-
NOv2 features between the query image and the retrieved
template Twin. Using these correspondences, we then refine
the pose ptemp

win via iterative PnP optimization, minimizing
the reprojection error and producing a pose Pobj that is ge-
ometrically consistent with the input image. Notably, all
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poses are estimated independently per frame, and we do not
apply additional temporal smoothing, since the method al-
ready achieves stable results.

3.3. Efficient Implicit Object Reconstruction
Once the object pose is estimated, we reconstruct the object
geometry and appearance using an implicit neural represen-
tation. The geometry is modeled with a signed distance field
(SDF) network, while the appearance is produced by a com-
panion color network. Formally, the geometry branch is a
function

fθ : (x, c) 7→
(
s, z

)
, (3)

which encodes a 3D point x ∈ R3 together with a condi-
tioning code c that models appearance changes, and outputs
its signed distance s ∈ R along with a latent feature vector
z. The color branch is another function

gϕ : (x,n, z) 7→ crgb, (4)

that maps the latent features z, 3D position x, and estimated
surface normal n to an RGB color crgb ∈ [0, 1]3. These two
branches are optimized end-to-end via differentiable vol-
ume rendering.

Notably, we integrate the instant surface reconstruction
strategy of [41] into our dynamic HOI pipeline, enabling
highly efficient rigid object reconstruction under hand mo-
tion. For dense sequences with several hundred frames,
our method completes reconstruction within only 16 min-
utes. Compared to Jiang et al. [17], our approach is 30×
faster, and compared to HOLD [10], it achieves an impres-
sive 112× speedup. We provide additional technical clarifi-
cations regarding our efficient implicit object reconstruction
in the Supplementary Material.

3.4. Hand-Object Interaction Optimization
We aim to produce hand–object interactions that are both
spatially consistent and physically plausible. A learned 3D
relative offset ensures accurate hand placement, while phys-
ically motivated constraints refine the interaction to encour-
age contact and prevent penetration.

Hand-Object Alignment: Since the object and hand are
estimated in different coordinate systems, explicit align-
ment is required. Prior works [10, 21] employ 2D mask
supervision by matching rendered masks with off-the-
shelf segmentations, yet such supervision is insufficient to
guarantee geometrically consistent alignment in 3D space.
Specifically, the hand and object may appear well-aligned
in 2D projections while remaining spatially distant in 3D
due to inherent depth and scale ambiguities. Our key ob-
servation is that the relative spatial relationship between the
hand and the object remains consistent across coordinate
systems, enabling us to use it as a geometric prior to align

the hand within the object coordinate space. Building on
this observation, we employ HORT [7] to estimate the 3D
relative offset ∆prel between the hand and object. The es-
timated offset serves as a geometric prior that aligns hand
parameters from the off-the-shelf model [27] within the ob-
ject coordinate system:

phand = pobj +
(
pHORT

hand − pHORT
obj

)
= pobj +∆prel. (5)

Here, pobj denotes the object position in its coordinate
system, while pHORT

hand and pHORT
obj represent the hand and ob-

ject positions in the HORT coordinate system, respectively,
from which we obtain ∆prel. These terms together define
the aligned hand position phand in the object frame. This
formulation provides a simple yet effective way to ensure
spatially consistent hand–object alignment.

Hand-Object Interaction Refinement: We further refine
the hand parameters to ensure physically plausible interac-
tion with the object. We optimize the hand translation th
and shape parameters β under several physically motivated
constraints. Specifically, a mask IoU loss Lmask enforces
silhouette consistency between rendered masks and off-the-
shelf segmentations [28], a contact loss Lcontact minimizes
the distance between hand contact points and the object sur-
face following [10], and a penetration loss Lpene penalizes
penetrations between hand vertices and the object mesh:

Lref = λmaskLmask + λcontactLcontact + λpeneLpene, (6)

where λmask, λcontact, and λpene denote the correspond-
ing loss weights. This refinement effectively reduces
hand–object penetration and improves the geometric con-
sistency of the reconstructed interaction. See more details
in the Supplementary Material.

4. Experiments

4.1. Implementation Details
We use SAM 2 [28] to obtain both object and hand masks,
providing clean and reliable segmentation cues for pose es-
timation and HOI optimization. For object pose estimation,
we extract DINOv2 [24] ViT-g/14 features from the 30th
layer. We empirically find that this intermediate layer of-
fers an effective balance between local geometric detail and
global semantic context, which is crucial for robust template
matching under severe occlusions and low-texture condi-
tions. During training, it is worth noting that we extend
the efficient computation framework [41] to the dynamic
HOI reconstruction pipeline, which enables processing a
sequence of 400 frames on a single RTX 4090 GPU in ap-
proximately 16 minutes. More details are provided in the
Supplementary Material.
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Figure 4. Qualitative comparison with state-of-the-art methods. Compared to prior methods, our approach achieves more accurate,
stable, and geometrically consistent hand–object reconstructions across challenging scenarios. For textureless objects (banana) and thin
structures (scissors), feature-based or SfM-initialized methods often produce unstable poses and distorted geometry, while ours maintains
reliable in-hand poses and sharper surfaces. For heavily occluded objects (power drill, mustard bottle), prior methods frequently show
misalignment or penetration, whereas AlignHOI preserves realistic contact and correct spatial relationships throughout. These results
demonstrate the robustness of our align–refine strategy across diverse manipulation conditions.

4.2. Metrics and Datasets

Metrics: We evaluate our method across object recon-
struction quality, hand pose accuracy, and hand–object in-
teraction following the metrics adopted in prior works [10,
40, 45]. For object reconstruction, we apply Iterative Clos-
est Point (ICP) alignment [2] to register the reconstructed
mesh with the ground truth, and then compute the Cham-
fer Distance (CD) and F-score to evaluate geometric fi-
delity. CD measures point-to-point mesh discrepancy, while
F-score (at 5 mm and 10 mm) reflects local shape accuracy
after alignment. For hand pose accuracy, we use the Root-
relative Mean-Per-Joint Position Error (MPJPE), measuring
the mean joint distance after normalizing to the hand root.

Additionally, we report the hand-relative Chamfer Distance
(CDh) to measure the object’s shape and pose consistency
relative to the hand.

Datasets: We use the HO3D-v3 dataset [12, 13] for eval-
uation, which contains RGB videos of hand–object inter-
actions along with ground-truth object annotations from
the YCB dataset [3]. Following the experimental setup of
HOLD, we use the same set of sequences and preprocess-
ing pipeline. To further evaluate real-world performance
and generalization, we additionally collected a diverse set
of in-the-wild sequences.
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Table 1. Comparison with state-of-the-art HOI reconstruction methods. We evaluate object reconstruction accuracy, hand pose accu-
racy, and hand-object interaction quality. Our method achieves consistently superior performance, demonstrating significant improvements
over prior approaches.

Method CD [cm2] ↓ F10 [%] ↑ MPJPE [mm] ↓ CDh [cm2] ↓
iHOI [45] 3.8 75.8 38.4 41.7

DiffHOI [46] 4.3 68.8 32.3 43.8
HOLD [10] 1.3 90.6 41.4 21.4

Ours 0.6 93.4 4.2 16.4

4.3. State-of-the-art comparison

Fig. 4 provides a qualitative comparison between our
method and state-of-the-art approaches. Hampali et al. [14]
represent the current in-hand object scanning paradigm,
which focuses solely on reconstructing the object with-
out modeling the hand. As the code is unavailable and
only partial reconstruction sequences are publicly acces-
sible, we follow their released sequences for compari-
son. IHOI [45] is a single-image method that recon-
structs generic hand–object configurations without requir-
ing category-specific 3D templates. HOLD [10] is the state-
of-the-art video-based baseline that jointly reconstructs
both the hand and the object, and is therefore the most rele-
vant method to ours.

Our qualitative comparisons show that existing meth-
ods consistently struggle with some challenging cases, in-
cluding textureless objects (e.g., the banana) and thin ob-
jects (e.g., the scissors). In contrast, our method pro-
duces significantly more accurate and stable reconstruc-
tions. This improvement stems from our robust in-hand
object pose estimation, which is less affected by missing
textures, color ambiguities, or partial occlusions. As a re-
sult, our approach maintains high reconstruction fidelity
even under these challenging conditions, which is one of
the key distinctions between our method and previous base-
lines. Moreover, for everyday manipulation scenarios in-
volving frequent hand–object contact or occlusions, such as
the power drill and mustard bottle, our method also delivers
superior reconstruction quality. By incorporating both spa-
tial and physical consistency during our hand–object inter-
action optimization (§ 3.4), our results exhibit realistic in-
teraction behaviors, effectively avoiding penetrations while
preserving meaningful contact throughout the entire manip-
ulation sequence.

We conduct quantitative comparisons against both
hand–object reconstruction methods and in-hand object
scanning methods, as summarized in Tab. 1 and Tab. 2.
Tab. 1 reports object reconstruction quality, hand pose ac-
curacy, and hand–object interaction accuracy. Across all
metrics, our method achieves the best overall performance.
Tab. 2 compares our method with current in-hand object

Table 2. Comparison with state-of-the-art in-hand object scan-
ning methods. All methods are evaluated on the same HO3D se-
quences [13] follow Hampali et al. [14] for fair comparison.

Method CD [cm2] ↓ F5 [%] ↑ F10 [%] ↑
Hampali et al. [14] 1.4 57.4 79.9

Jiang et al. [17] 0.6 76.0 94.4

Ours 0.5 78.2 94.4

Figure 5. Ablation study of in-hand object pose estimation. We
compare our in-hand object pose initialization with a traditional
SfM-based initialization. SfM produces unstable poses when the
object is textureless or partially occluded, leading to severely dis-
torted reconstructions. In contrast, our initialization method yields
stable and accurate object poses, resulting in significantly im-
proved reconstruction quality.

scanning methods, focusing on object reconstruction qual-
ity. We evaluate on the video sequences used by Hampali
et al. [14], and the results demonstrate that our method also
performs favorably in the in-hand object scanning setting.

4.4. Ablation Study
In-hand Object Pose Estimation vs. Traditional SfM:
We study the impact of our in-hand object pose initializa-
tion by replacing it with a traditional SfM-based initializa-
tion [30, 31], while keeping all subsequent reconstruction
and optimization modules unchanged. As shown in Tab. 3,
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Figure 6. Ablation study on hand–object alignment. The hand
and object are initially predicted in separate coordinate systems,
causing large spatial inconsistencies. The learned 3D relative-
position prior provides coarse alignment, but residual misalign-
ment remain. With mask- and contact-based refinement, the hand
and object become geometrically consistent and physically plau-
sible. This shows that both coarse alignment and refinement are
essential for stable, realistic hand–object interactions.

SfM-based initialization leads to noticeably lower recon-
struction quality, especially on sequences with weak tex-
ture, repetitive patterns, or large hand-induced occlusions
(see Fig. 5). Since SfM fundamentally relies on robust pixel
feature tracks, it often fails to produce stable camera–object
correspondences in these challenging settings, resulting in
drifting or inconsistent object poses.

In contrast, our initialization strategy is designed specif-
ically for the HOI scenario. By leveraging feature-based
template matching and geometric-consistency verification,
it produces stable and accurate pose estimates even when
visual features are scarce or occluded. These reliable initial
poses provide a much stronger starting point for the sub-
sequent reconstruction pipeline, ultimately yielding a sig-
nificantly more consistent and faithful object reconstruc-
tion. This comparison highlights the limitations of feature-
dependent SfM under HOI conditions, and demonstrates the
necessity of our tailored in-hand pose estimation approach.

Effect of Object Pose Refinement: We further evaluate
the importance of our object pose refinement module by dis-
abling it after the object pose matching. In this setting, we
select the top five template candidates, identify the best one,
and directly use its template pose without any refinement.
As shown in Tab. 3, skipping the refinement step leads to
degradation in object reconstruction quality: the lack of
feature-based alignment and iterative optimization results
in residual pose errors that propagate into the reconstructed
geometry. In contrast, our refinement stage leverages DI-
NOv2 feature correspondences and reprojection-error mini-
mization to correct these inaccuracies, producing poses that
are geometrically consistent with the input image. This
yields better object reconstruction results. Overall, this ab-
lation highlights that coarse template matching alone is in-
sufficient, and precise per-frame refinement is critical for

Table 3. Ablation study. We analyze the impact of two key com-
ponents of our method: (1) replacing our in-hand object pose ini-
tialization with a traditional SfM-based initialization, and (2) dis-
abling the object pose refinement module and directly using the
retrieved discrete template pose.

CD [cm2] ↓ F5 [%] ↑ F10 [%] ↑
SfM-based pose 5.8 60.4 75.2
w/o refinement 1.1 71.8 87.8

Ours 0.6 76.4 93.4

achieving high-fidelity and temporally stable reconstruc-
tions.

Effect of Hand–Object Alignment: As shown in Fig. 6,
the hand and object are initially predicted in different coor-
dinate systems, resulting in large spatial inconsistencies and
unrealistic interaction. Introducing our learned 3D relative-
position prior provides a coarse but meaningful alignment,
bringing the hand and object into the correct spatial relation-
ship. However, without further refinement, residual discrep-
ancies remain, leading to inaccurate contact and occasional
penetration. With the full refinement module, which en-
forces mask consistency and contact while suppressing pen-
etration, the hand and object become geometrically compat-
ible and interact in a physically plausible manner. This ab-
lation demonstrates that both the coarse alignment and the
refinement stage are essential for producing stable and real-
istic hand–object interactions.

5. Conclusion
In this paper, we introduced AlignHOI, a new framework
for reconstructing dynamic hand–object interactions from
monocular video via alignment and refinement. Our method
converts the ill-posed problem of category-agnostic in-
hand object pose estimation into a tractable finite template-
matching task, enabling stable coarse alignment even under
severe occlusions, low-textured surfaces, and thin-object
geometries. The retrieved poses are further refined via ge-
ometric consistency. Building on these robust poses, we
reconstruct the object using an efficient implicit neural rep-
resentation, which enables fast and high-fidelity surface
recovery. To resolve cross-coordinate inconsistencies be-
tween the hand and object, we introduce a physically and
spatially grounded optimization strategy that uses a learned
3D relative-position prior along with contact and penetra-
tion constraints. This refinement yields coherent, realistic,
and stable 3D interactions. Extensive experiments demon-
strate that AlignHOI not only achieves state-of-the-art re-
construction accuracy but also delivers significantly im-
proved hand–object alignment and interaction plausibility.
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AlignHOI: Hand–Object Reconstruction via Alignment and Refinement

Supplementary Material

This supplementary material provides extended details
and results that complement the main paper. Section A
presents further explanations and derivations of our method,
while Section B includes additional experiment details, ab-
lation studies, and quantitative results that extend the anal-
ysis in the main paper.

A. More Details on Our Method
This section provides additional derivations, algorithmic ex-
planations, and implementation details for our method in-
troduced in Section 3 of the main paper.

A.1. Preparation: Coarse Object Prior
We use Amodal3R [43] to generate the initial coarse ob-
ject mesh M̂o for rendering template views. Since our in-
put is a video rather than a set of manually selected views,
we introduce a fixed view-selection strategy to construct
the four-view input following the default multi-view setting
of Amodal3R. This deterministic procedure ensures repro-
ducible view inputs and improves the stability of the gen-
erated results. Specifically, we uniformly divide the video
into four temporal segments {Sk}4k=1 and, from each seg-
ment, select the frame with the largest unoccluded object
area. Let A(t) denote the number of visible object pixels
in frame t. Using this visibility measure, we identify one
representative frame from each temporal segment and then
sort the four selected frames in descending order of visibil-
ity, such that higher-quality views appear earlier in the input
sequence:

t⋆k = argmax
t∈Sk

A(t), k = 1, . . . , 4,

s.t. A(t⋆1) ≥ A(t⋆2) ≥ A(t⋆3) ≥ A(t⋆4).

Our view-selection strategy preserves temporal diversity,
maximizes object visibility in each segment, and prioritizes
the most informative views, resulting in more reliable gen-
eration quality. As shown in Fig. A, we compare four view-
selection strategies for generating the coarse object prior
from a video. Our method, which selects one high-visibility
frame per temporal segment and orders them by visibil-
ity, produces the most stable and complete meshes. Using
the same per-segment frames but keeping their temporal or-
der yields slightly inferior results, showing mild distortions
due to suboptimal view ordering. Randomly sampling four
frames from the entire video leads to highly unstable out-
puts, with breakages caused by occluded or uninformative
views. Using only the single frame with the largest visible
area can produce plausible mesh but lacks viewpoint diver-
sity, and thus fails to generalize consistently to custom or

complex object. These results highlight the importance of
both temporal coverage and visibility-aware ordering for re-
liable coarse object generation.

Figure A. Our visibility-aware view-selection strategy pro-
duces stable and complete coarse objects. Given a video in-
put, we compare different view-selection strategies for generat-
ing the coarse object prior. Our method, which selects one high-
visibility frame per temporal segment and orders them by visi-
bility, yields consistent meshes, whereas temporal-order, random-
view, and single-view inputs produce inferior results.

During inference, we fix the sampler parameters as
λgeo = 9.5 and λtex = 5.0. Generally, λgeo controls the
guidance strength for geometry generation, while λtex con-
trols the guidance strength for texture generation.

A.2. Object Pose Estimation
Object Pose Matching: To obtain the object template set,
following [25], we render the 3D object model from multi-
ple viewpoints. We uniformly sample 57 viewing directions
over the viewsphere and apply 14 evenly spaced in-plane
rotations for each direction, resulting in a total of 798 tem-
plates per object. We extract DINOv2 patch features from
each template and reduce them to 256 dimensions via PCA.
All projected features are clustered using k-means into a
vocabulary of 2,048 visual words. Each template is then
represented by a 2,048-dimensional descriptor.

Given a query image, we extract DINOv2 features on a
14 × 14 grid inside the object mask and project them into
the same PCA space. The descriptor for the query image
is then computed using the shared visual vocabulary. We
compute cosine similarities s(I, Ti) and retrieve the top-5
most similar templates. Finally, we perform a geometric
consistency check to obtain the final template selection.

Object Pose Refinement: Given the coarse pose initial-
ization provided by the retrieved template pose ptemp

win ∈ P ,
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we refine the pose using Levenberg–Marquardt [20, 22] to
iteratively minimize the reprojection error over the estab-
lished 2D–3D correspondences. Formally, we solve

θ∗ = argmin
θ

∑
i

∥∥πθ(Xi)− xi

∥∥2, (7)

where Xi are 3D object points in the model coordinate
frame, xi are the corresponding 2D image locations, and
πθ is the camera projection function with pose parameters
θ = (R, t) representing the model-to-camera transforma-
tion. With camera intrinsics K, the projection becomes

πθ(X) = K[R | t]X, (8)

where X denotes a homogeneous 3D point. Starting from
ptemp

win , the optimization iteratively updates (R, t) until con-
vergence, yielding the continuous pose estimate Pobj for the
current frame.

Discussion of DINOv2-Based Feature Choices: DI-
NOv2 provides dense, highly discriminative patch-level
features that are well suited for our template-based object
pose estimation pipeline. These features exhibit strong ro-
bustness to the domain gap between rendered templates and
real images, where differences in lighting, material appear-
ance, and sensor noise can otherwise degrade matching per-
formance. Moreover, DINOv2 features support efficient
large-scale retrieval: once extracted, they are projected into
a compact PCA space and indexed for fast nearest-neighbor
search. In addition, the features produce stable local cor-
respondences that benefit geometric consistency checking
and pose refinement, enabling reliable matching even for
texture-poor or partially occluded objects.

In our experiments, we explored multiple variants of
DINO-based representations, including different model
sizes and feature-extraction layers from both DINOv2 [24]
and DINOv3 [32]. A general observation is that larger mod-
els tend to produce stronger and more distinctive features
when an appropriate intermediate layer is selected. Among
the configurations we tested, both DINOv2 ViT-g/14 (layer
30) and DINOv3 ViT-7B/16 (layer 38) yielded competitive
performance. However, DINOv3 ViT-7B/16 operates at a
coarser spatial granularity (16×16 patches), incurs several
times higher computational cost, and does not provide clear
benefits for our object-level matching task. Considering the
trade-off between accuracy, feature granularity, and infer-
ence efficiency, we adopt DINOv2 ViT-g/14 features from
the 30th layer as our default representation.

A.3. Efficient Implicit Object Reconstruction
We provide here a brief technical clarification of how we
achieve efficient implicit object reconstruction in our HOI

Figure B. Visualization of the relative hand–object displace-
ment predicted by HORT [7]. Given a reference frame (left),
we use HORT to estimate the relative translation ∆prel between
the hand and the object in its coordinate system (right).

pipeline. We aim to accelerate implicit object reconstruc-
tion, as existing HOI reconstruction pipelines typically re-
quire dozens of hours to optimize a single sequence [10,
17], making large-scale reconstruction and subsequent de-
velopment impractical.

Although a naı̈ve combination of neural surface meth-
ods [39] with Instant-NGP [23] appears appealing for fast
optimization, it does not work in practice. Instant-NGP
does not support efficient second-order derivative computa-
tion in backpropagation, which is required for enforcing the
Eikonal constraint in neural surface formulations. Instant-
NSR [47] addresses this limitation using finite-difference
approximations of second-order derivatives, but such ap-
proximations introduce numerical inaccuracies and often
lead to unstable training, as discussed in NeuS2 [41].
NeuS2 provides a more principled and efficient alterna-
tive by introducing an analytic and stable formulation of
the required second-order derivatives. We integrate NeuS2
into the dynamic HOI pipeline and observe both substan-
tial speedup and improved reconstruction accuracy under
challenging hand–object interactions. This integration en-
ables fast, stable, and high-fidelity reconstruction, greatly
enhancing the practicality of our system by supporting effi-
cient experiments and future scaling to larger datasets and
more complex HOI scenarios.

A.4. Hand-Object Interaction Optimization
Hand-Object Alignment: We present the detailed math-
ematical formulation of the hand–object alignment proce-
dure here. The object position in the target coordinate sys-
tem is obtained by transforming the canonical mesh center:

ptarget
obj = sscene ·

(
R ·

(
sobj ·mean(denorm(V 3d

obj ))
)
+ t

)
, (9)

where sscene is the global scene scaling factor, R and t de-
note the rigid transformation applied to the object, sobj is
the object-specific scaling factor, and V 3d

obj is the set of ob-
ject vertices.

As illustrated in Fig. B, HORT [7] provides the relative
displacement between the hand and the object in its own
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coordinate system:

∆prel = pHORT
hand − pHORT

obj , (10)

where pHORT
hand and pHORT

obj denote the hand and object cen-
troids, respectively.

Since the relative displacement is invariant across coor-
dinate systems, the hand position in the target space is com-
puted as

ptarget
hand = ptarget

obj +∆prel. (11)

This derivation ensures that the hand and object are con-
sistently aligned in the unified coordinate system by pre-
serving their relative configuration. Note that this align-
ment only accounts for translation, as it is computed from
the point cloud centroids. Subsequent hand pose refinement
further optimizes the remaining degrees of freedom, includ-
ing rotation and articulation details.

Hand-Object Interaction Refinement: We provide de-
tailed definitions of the losses used in the hand parameters
refinement stage.

To ensure silhouette consistency, we define the masked
IoU loss as:

Lmask = 1− Int

Uni
,

Int =
∑
i

Vi Mpred,iMgt,i,

Uni =
∑
i

Vi Mpred,i +
∑
i

Vi Mgt,i − Int,

(12)

where Vi denotes whether pixel i is valid:

Vi =

{
1, pixel i is valid for supervision,

0, otherwise.
(13)

This validity mask excludes pixels belonging to the other
class, ensuring, for example, that object regions do not af-
fect the hand-mask loss. Unlike simple pixel-wise overlap
losses that may fail to penalize completely disjoint masks,
the IoU formulation provides a more stable gradient when
the overlap is small or zero. We also adopt an occlusion-
aware computation. During hand mask fitting, pixels be-
longing to the object mask are ignored in the loss to prevent
erroneous penalization in occluded regions.

We encourage the hand to touch the object by minimiz-
ing the distance from hand contact vertices to the nearest
object vertices:

Lcontact =
1

|V c
h |

∑
v∈V c

h

min
u∈Vo

∥v − u∥22. (14)

where V c
h denotes the hand contact-region vertices, and Vo

is the set of object-surface vertices.

Table A. HO3D sequences used for experiments.

Sequence name Object Total Frames

ABF12 bleach 222
ABF14 bleach 222
BB12 banana 187
BB13 banana 257

GPMF12 potted meat 184
GPMF14 potted meat 175
GSF12 scissors 167
GSF13 scissors 255
MC1 cracker box 144
MC4 cracker box 144

MDF12 power drill 449
MDF14 power drill 449
ShSu10 sugar box 296
ShSu12 sugar box 296

SM2 mustard 144
SM4 mustard 144

SMu1 mug 287
SMu40 mug 320

To discourage hand–object intersections, we use an SDF-
based penetration loss:

Lpene =
1

|Vh|
∑
v∈Vh

max(0,−Φo(v)), (15)

where Φo is the object signed distance field and Vh is the
set of hand vertices.

Overall, the refinement loss is expressed as

Lref = λmaskLmask + λcontactLcontact + λpeneLpene, (16)

where λmask, λcontact, and λpene are the respective weights.

B. More Experiments

B.1. More Experiment Details
In Tab. A, we list the HO3D sequences used for experi-
ments, following the same evaluation protocol as HOLD.
These sequences cover diverse hand–object configurations
and interaction patterns, ensuring a comprehensive assess-
ment of reconstruction performance.

In Fig. C, we also provide the corresponding coarse
object priors generated for each sequence. We use these
meshes as geometric priors during the object pose matching
stage, where they supply 3D-consistent renderings for tem-
plate retrieval. Although the generated priors exhibit notice-
able differences in both geometry and texture, our method
remains robust and consistently produces high-quality re-
construction results.
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Table B. Ablation study of object pose estimation. We evaluate the contribution of each component in our pipeline. Top-n retrieval, the
template pose prior, and refinement all play essential roles in achieving stable and accurate in-hand object pose estimation.

Method Top-n Template Pose Refinement CD [cm2] ↓ F5 [%] ↑ F10 [%] ↑ ATE [mm] ↓
SfM Init ✗ ✗ ✗ 5.8 60.4 75.2 4.1
w/o Top-n (Top-1 only) ✗ ✓ ✓ 0.7 74.2 92.1 3.2
w/o Template Pose ✓ ✗ ✓ 1.0 71.3 89.6 3.5
w/o Refinement ✓ ✓ ✗ 1.1 71.8 87.8 3.5
Top-3 candidates ✓ ✓ ✓ 0.6 76.2 92.5 3.0
Top-10 candidates ✓ ✓ ✓ 0.7 76.0 91.9 3.0

Ours (full, Top-5) ✓ ✓ ✓ 0.6 76.4 93.4 3.0

Figure C. Coarse object priors generated for each sequence.
For each sequence, the left image shows the reference frame and
the right shows the object prior. Despite variations in geome-
try and texture, these priors provide sufficient 3D cues for robust
template-based pose matching.

B.2. More Ablation Studies
Tab. B provides comprehensive ablation results to further
demonstrate the contribution of each component in our ob-
ject pose estimation pipeline. All experiments are evaluated
following the metrics described in Section 4.2 of the main
paper, including CD, F5, and F10. In addition, we follow
the SLAM literature and introduce the Absolute Trajectory
Error (ATE) to further evaluate pose accuracy [34], where
we first align the predicted trajectory with the ground-truth
trajectory using Umeyama alignment [38] and then compute
the trajectory error in millimeters.

SfM Initialization: We replace our template-based pose
estimation pipeline with a traditional SfM pipeline. SfM
performs poorly in HOI videos due to severe hand–object
occlusions, rapid object motion, and the lack of stable tex-
ture features on many objects. This leads to significantly
degraded CD, F5, F10, and ATE metrics.

w/o Top-n (Top-1 Only): We disable Top-n template re-
trieval and directly select the template with the highest sim-
ilarity scores, followed by pose refinement. Although DI-
NOv2 features are robust, cosine similarity does not neces-
sarily reflect geometric consistency, causing the top-1 tem-
plate to often correspond to an incorrect pose. The subse-
quent refinement step can alleviate small deviations but can-
not correct a fundamentally wrong template choice, high-
lighting the importance of the Top-n candidate set and geo-
metric verification.

w/o Template Pose: We disable the discrete template
pose and estimate the pose solely using patch correspon-
dences via PnP optimization. While correspondences and
PnP can still recover a reasonable pose, the optimization be-
comes more vulnerable to local mismatches and partial oc-
clusions without the template pose prior. This results in de-
graded accuracy, demonstrating that the template pose pro-
vides an essential coarse geometric prior rather than merely
supplying correspondences.

w/o Refinement: We remove the final LM-based pose re-
finement and directly use the discrete template pose as the
output. Since template poses belong to a discrete pose space
and cannot perfectly match the input image, removing re-
finement retains the discretization error, causing a notice-
able drop across all metrics. This highlights the importance
of continuous refinement for accurate pose estimation.

Top-n Candidate Set Size: We evaluate Top-3, Top-5,
and Top-10 and observe that all configurations outperform
Top-1 by a clear margin. This confirms that, compared
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to selecting only the Top-1 template, constructing a candi-
date set and applying geometric consistency filtering consis-
tently improves performance. Among these settings, Top-5
achieves the best overall accuracy, and we therefore adopt
Top-5 as the default configuration in our full pipeline.

Summary: Across all settings, our ablations validate the
importance of each module in our object pose estimation
pipeline. Top-n retrieval and geometric consistency ensure
reliable template selection, the template pose provides a
strong coarse prior, and refinement is critical for precise op-
timization. Together, these components enable robust pose
estimation even under occlusion and low-texture conditions.

B.3. More Qualitative Results
Continuous Hand–Object Interaction Sequences. To
further demonstrate the stability and temporal consistency
of our pipeline, we visualize complete hand–object inter-
action sequences in Fig. D. Our method produces smooth,
temporally coherent trajectories for both the hand and ob-
ject, enabling physically plausible interaction modeling
over long video spans. The reconstructed geometry and
poses remain consistent across frames despite severe self-
occlusion, rapid motion, and viewpoint changes. These
results illustrate that our system is not limited to isolated
frames, but can robustly support continuous HOI reasoning,
analysis, and downstream applications such as interaction
understanding and dynamic scene reconstruction.

In-the-wild Results: As noted in the main paper, we ad-
ditionally collect a diverse set of in-the-wild sequences
to evaluate the real-world performance and generalization
ability of our method. In Fig. E, we present several chal-
lenging cases to stress-test the robustness and effectiveness
of our method. These include: (1) a Grogu doll with com-
plex wrinkles and geometry; (2) a cleaning spray bottle with
thin-sheet partial structures; (3) a texture-less pink bottle
with a slender shape; (4) a toy water gun with rich geomet-
ric details; (5) and a white mug that is texture-less and re-
flects colored environmental lighting. These cases highlight
our method’s ability to handle diverse object types, varying
material properties, and imperfect generated coarse priors
while still producing stable and accurate reconstructions.
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Figure D. Continuous Hand–Object Interaction Sequences. Given a sequence in HO3D, we show the temporally ordered HOI recon-
struction results. Each timestep begins with the reference frame, followed by our reconstructed results in the camera view and an alternative
view. Across time, our method maintains consistent geometry, stable hand–object contact, and smooth motion, demonstrating robust and
temporally coherent HOI reconstruction even under self-occlusion and rapid motion.
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Figure E. In-the-wild results. For each example, the leftmost image shows the generated object prior, and the remaining images show HOI
reconstruction results across different frames. These diverse in-the-wild cases demonstrate that our method produces stable and accurate
reconstructions under varying object types, shapes, materials, and lighting conditions.
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